Mathematical Morphology second part: 3D

Extension to Grayscale Image

→ A 2D grayscale image is treated as a 3D solid in space – a landscape – whose height above the surface at a point is proportional to the brightness of the corresponding pixel.

Representation of Grayscale Images

Support of an Image

Umbra

- → This part of mathematical morphology is an extension to multidimensional 'images' in particular to grey level and color images
- → A \subseteq Eⁿ, F \subseteq Eⁿ⁻¹ (support of A), x∈F (support element), y∈E (intensity)
- Top of a set A (for n=2):
 T[A](x) = max { y | (x, y) ∈ A }
- Umbra of f:U[f] = { (x, y) ∈ A | y ≤ f(x) }

Umbra - Proprieties

- + T[A] \subseteq A \subseteq U[A] \subseteq Eⁿ
- **+** U[U[A]] ≡ U[A]

Dilation for grey level images

- **→** F,K⊆Eⁿ⁻¹
- → The dilation of image f and structural element k can be defined as:
 - $f \oplus k = T\{U[f] \oplus U[k]\}$
- + Tends to brighten the image, remove dark regions

Dilation - Example

Dilation - Example

 Structuring element: "flat-top", a parallelepiped with unit height and size 5x5 pixels

Mr. A. Morris, Leica Cambridge, Ltd.

Grey scale erosion

- **→** F,K⊆Eⁿ⁻¹
- → The erosion of image f and structural element k can be defined as:

```
f\Theta k = T\{U[f]\Theta U[k]\}
```

- → Tends to darken the image, remove bright regions
- → From the computational view point this operation is equivalent to a convolution

Erosion - Example

U[k]

Erosion - Example

 Structuring element: "flat-top", a parallelepiped with unit height and size 5x5 pixels

Mr. A. Morris, Leica Cambridge, Ltd.

Opening and Closing

→ Opening and closing of an image f(x,y) by a structuring element b(x,y) have the same form as their binary counterpart:

$$f \circ b = (f \oplus b) \oplus b$$
 $f \bullet b = (f \oplus b) \oplus b$

- Geometric interpretation:
- → View the image as a 3-D surface map, and suppose we have a spherical structuring element.
 - → Opening: roll the sphere against the underside of the surface, and take the highest points reached by any part of the sphere. Opening suppresses bright details smaller than the specified SE.
 - + Closing: roll the sphere on top of the surface, and take the *lowest* points reached by any part of the sphere. Closing suppresses dark details smaller than the specified SE.
- Opening and closing are used often in combination as morphological filters for image smoothing and noise removal.

Opening - Example

15

Opening - Example

- Structuring element: "flat-top", a parallelepiped with unit height and size 5x5 pixels
- Note the decreased size of the small bright details with no appreciable effect on the darker details

Mr. A. Morris, Leica Cambridge, Ltd.

Closing - Example

Closing - Example

- Structuring element: "flat-top", a parallelepiped with unit height and size 5x5 pixels
- Note the decreased size of the small darker details with no appreciable effect on the bright details

Mr. A. Morris, Leica Cambridge, Ltd.

Morphological smoothing - Example

- Opening followed by closing
- Structuring element: "flat-top", a parallelepiped with unit height and size 5x5 pixels

Mr. A. Morris, Leica Cambridge, Ltd.

Morphological gradient - Example

- → Difference between dilation and erosion $g = (f \oplus b) (f \ominus b)$
- Structuring element: "flat-top", a parallelepiped with unit height and size 5x5 pixels
- → The edges are enhanced and the contribution of the homogeneous areas are suppressed, thus producing a "derivative-like" (gradient) effect.

Mr. A. Morris, Leica Cambridge, Ltd.

Top-hat transformation - Example

- + Difference between original and opening $g = f (f \circ b)$
- Structuring element: "flat-top", a parallelepiped with unit height and size 5x5 pixels

Mr. A. Morris, Leica Cambridge, Ltd.

Opening vs Closing on Gray Value Images

 Disk with radius 3 as structure element

 Opening: all the thin white bands have disappeared, only the broad one remains

002538

 Closing: all the valleys where the structure element does not fit have been filled, only the three broad black bands remain

Opening vs Closing on Gray Value Images

→ 5x5 square structuring element

Opening vs Closing on Gray Value Images

→ 5x5 square structuring element

Morphological Smoothing: opening and closing

Cignus Loop supernova, taken by X-ray band by NASA Hubble Telescope

12/20/2016

Morphological Gradient

FIGURE 9.39

- (a) 512×512 image of a head CT scan.
- (b) Dilation.
- (c) Erosion.
- (d) Morphological gradient, computed as the difference between (b) and (c). (Original image courtesy of Dr. David R. Pickens, Vanderbilt University.)

Top-hat and Bottom-hat Transformations

→ The top-hat transformation of a grayscale image f is defined as f minus its opening:

$$T_{hat}(f) = f - (f \circ b)$$

→ The bottom-hat transformation of a grayscale image f is defined as its closing minus f:

$$B_{hat}(f) = (f \bullet b) - f$$

→ One of the principal applications of these transformations is in removing objects from an image by using structuring element in the opening or closing operation

Example of Using Top-hat Transformation in Segmentation

12/2 **FIGURE 9.40** Using the top-hat transformation for *shading correction*. (a) Original image of size 600×600 pixels. (b) Thresholded image. (c) Image opened using a disk SE of radius 40. (d) Top-hat transformation (the image minus its opening). (e) Thresholded top-hat image.

Gonzales-Woods

X's indicate «don't care» values

$$B^{i} i = 1, 2, 3, 4$$
× (rotate 90°)

V

$$B^{i}$$
 $i = 5, 6, 7, 8$ (rotate 90°)

Operation	Equation	Comments
Translation	$(B)_z = \{w w = b + z, $ for $b \in B\}$	Translates the origin of B to point z .
Reflection	$\hat{B} = \{w w = -b, \text{ for } b \in B\}$	Reflects all elements of B about the origin of this set.
Complement	$A^c = \{w w \notin A\}$	Set of points not in A.
Difference	$A - B = \{w w \in A, w \notin B\}$ $= A \cap B^{c}$	Set of points that belong to A but not to B .
Dilation	$A \oplus B = \left\{ z (\hat{B}_z) \cap A \neq \emptyset \right\}$	"Expands" the boundary of A. (I)
Erosion	$A\ominus B=\big\{z (B)_z\subseteq A\big\}$	"Contracts" the boundary of A. (I)
Opening	$A \circ B = (A \ominus B) \oplus B$	Smoothes contours, breaks narrow isthmuses, and eliminates small islands and sharp peaks. (I)

Operation	Equation	Comments
Closing	$A \bullet B = (A \oplus B) \ominus B$	Smoothes contours, fuses narrow breaks and long thin gulfs, and eliminates small holes. (I)
Hit-or-miss transform	$A \circledast B = (A \ominus B_1) \cap (A^c \ominus B_2)$ $= (A \ominus B_1) - (A \oplus \hat{B}_2)$	The set of points (coordinates) at which, simultaneously, B_1 found a match ("hit") in A and B_2 found a match in A^c
Boundary extraction	$\beta(A) = A - (A \ominus B)$	Set of points on the boundary of set A. (I)
Hole filling	$X_k = (X_{k-1} \oplus B) \cap A^c;$ $k = 1, 2, 3, \dots$	Fills holes in A ; $X_0 = \text{array of } 0$ s with a 1 in each hole. (II)
Connected components	$X_k = (X_{k-1} \oplus B) \cap A;$ $k = 1, 2, 3, \dots$	Finds connected components in A ; X_0 = array of 0s with a 1 in each connected component. (I)

Gorl Eales webds

Operation	Equation	Comments
Convex hull	$X_k^i = (X_{k-1}^i \circledast B^i) \cup A;$ i = 1, 2, 3, 4; k = 1, 2, 3,; $X_0^i = A;$ and $D^i = X_{conv}^i$	Finds the convex hull $C(A)$ of set A , where "conv" indicates convergence in the sense that $X_k^i = X_{k-1}^i$. (III)
Thinning	$A \otimes B = A - (A \otimes B)$ $= A \cap (A \otimes B)^{c}$ $A \otimes \{B\} =$ $((\dots((A \otimes B^{1}) \otimes B^{2}) \dots) \otimes B^{n})$ $\{B\} = \{B^{1}, B^{2}, B^{3}, \dots, B^{n}\}$	Thins set A. The first two equations give the basic definition of thinning. The last equations denote thinning by a sequence of structuring elements. This method is normally used in practice. (IV)
Thickening	$A \odot B = A \cup (A \circledast B)$ $A \odot \{B\} = ((\dots(A \odot B^1) \odot B^2 \dots) \odot B^n)$	Thickens set A. (See preceding comments on sequences of structuring elements.) Uses IV with 0s and 1s reversed.

Gorl Eal et inwebds

Operation	Equation	Comments
Skeletons	$S(A) = \bigcup_{k=0}^{K} S_k(A)$ $S_k(A) = \bigcup_{k=0}^{K} \{ (A \ominus kB)$ $- [(A \ominus kB) \circ B] \}$ Reconstruction of A : $A = \bigcup_{k=0}^{K} (S_k(A) \oplus kB)$	Finds the skeleton $S(A)$ of set A . The last equation indicates that A can be reconstructed from its skeleton subsets $S_k(A)$. In all three equations, K is the value of the iterative step after which the set A erodes to the empty set. The notation $(A \ominus kB)$ denotes the k th iteration of successive erosions of A by B . (I)
Pruning	$X_1 = A \otimes \{B\}$ $X_2 = \bigcup_{k=1}^8 (X_1 \oplus B^k)$ $X_3 = (X_2 \oplus H) \cap A$ $X_4 = X_1 \cup X_3$	X ₄ is the result of pruning set A. The number of times that the first equation is applied to obtain X ₁ must be specified. Structuring elements V are used for the first two equations. In the third equation H denotes structuring elements on the structuring elements of the structure of the st

Operation	Description
bothat	"Bottom-hat" operation using a 3×3 structuring element; use imbothat (see Section 9.6.2) for other structuring elements.
bridge	Connect pixels separated by single-pixel gaps.
clean	Remove isolated foreground pixels.
close	Closing using a 3×3 structuring element; use imclose for other structuring elements.
diag	Fill in around diagonally connected foreground pixels.
dilate	Dilation using a 3×3 structuring element; use imdilate for other structuring elements.
erode	Erosion using a 3×3 structuring element; use imerode for other structuring elements.
fill	Fill in single-pixel "holes" (background pixels surrounded by foreground pixels); use imfill (see Section 11.1.2) to fill in larger holes.
hbreak	Remove H-connected foreground pixels.
majority	Make pixel p a foreground pixel if at least five pixels in $N_8(p)$ (see Section 9.4) are foreground pixels; otherwise make p a background pixel.
open	Opening using a 3×3 structuring element; use function imopen for other structuring elements.
remove	Remove "interior" pixels (foreground pixels that have no background neighbors).
shrink	Shrink objects with no holes to points; shrink objects with holes to rings.
skel	Skeletonize an image.
spur	Remove spur pixels.
thicken	Thicken objects without joining disconnected 1s.
thin	Thin objects without holes to minimally connected strokes; thin objects with holes to rings.
tophat	"Top-hat" operation using a 3×3 structuring element; use imtophat (see Section 9.6.2) for other structuring
	elements. Gonzales